Taichi Matsubara, Ph.D. student
@TaichiMResearch
Followers
26
Following
3
Media
1
Statuses
16
Quantum Machine Learning/Computational Genomics/ML for transcriptional regulation/ Ph.D. student at Kyushu Univ. | QTFPred is published !
Fukuoka, JP
Joined October 2025
Thrilled to announce that my first 1st-author paper has been published in Briefings in Bioinformatics! 🎉🧬 @OUPAcademic Introducing QTFPred: A robust quantum-classical hybrid model that predicts transcription factor binding at base resolution. 🧬⚛️ 📄 Paper:
academic.oup.com
Abstract. Deep learning has become an essential tool for identifying transcription factor (TF) binding sites, yet conventional approaches often struggle wi
1
2
9
@OxUniPress @PennyLaneAI @kosuke_mitarai #QTFPred integrates a Parameterized Quantum Circuit (PQC) directly into a DL pipeline. The Mechanism: 1️⃣ Variational Params : Trainable rotation angles embedded in the circuit. 2️⃣ Exponential Feature Space: By exploiting superposition, the circuit processes features in a massive
0
0
0
【遂に出た】Briefings in Bioinformatics誌から筆頭論文Published!🧬 "QTFPred"を世に放ちました🧬🔯 量子機械学習によって転写因子-DNA結合を高精度予測します 量子計算、量子情報の可能性をゲノムインフォマティクスの分野で開拓した僕のデビュー作です Check it out! https://t.co/IRGkxhU0iu
1
2
10
【注目プレスリリース】BlueMemeと九州大学、量子AIを活用した先進的ゲノム解析技術の研究成果が国際学術誌に掲載 創薬・医療研究の新たな可能性を切り拓く量子機械学習モデル「QTFPred」を発表 / 九州大学
research-er.jp
2025.12.02 九州大学 プレスリリース 株式会社 BlueMeme(本社:東京都千代田区、代表取締役社長:宮脇 訓晴、以下 BlueMeme)は、九州大学 生体防御医学研究所 高深度オミクスサイエンスセンター バイオメディカル情報解析分野 長﨑研究室(教授:長﨑 正朗、以下 九州大学)との共...
0
3
20
BlueMemeと九州大学、量子AIを活用した先進的ゲノム解析技術の研究成果が国際学術誌に掲載 創薬・医療研究の新たな可能性を切り拓く量子機械学習モデル「QTFPred」を発表 📗 https://t.co/HxU7QR1rV0 #九州大学 #九大研究成果 #九大 #KyushuU
https://t.co/ZgTPOlQFjC
kyushu-u.ac.jp
創薬・医療研究の新たな可能性を切り拓く量子機械学習モデル「QTFPred」を発表
0
6
16
@OxUniPress important points about implementation: quantum conv layer is written by pennylane @PennyLaneAI model is based on Quantum Circuit Learning (QCL) @kosuke_mitarai
1
0
0
This work opens the door for Quantum ML in genomics, especially for rare targets🧬. Huge thanks to my supervisors and co-authors for their guidance on phd journey! 😆 📖 Read here: https://t.co/XtzQnCR5SY 💻 Code: https://t.co/9x0H2bZyeQ @OxUniPress
academic.oup.com
Abstract. Deep learning has become an essential tool for identifying transcription factor (TF) binding sites, yet conventional approaches often struggle wi
1
0
0
Benchmarked on 49 datasets, QTFPred achieved state-of-the-art accuracy in: ✅ 92% of binary classification tasks ✅ 96% of signal prediction tasks Crucially, it significantly outperforms baselines (BPNet, FCNsignal) specifically in data-sparse groups (<10k peaks).
1
0
0
New: Quantum Computation ⚛️ We replaced the standard first layer with a Quantum Convolutional (QConv) layer. By mapping DNA sequences🧬 into an exponentially large quantum feature space, QTFPred captures complex patterns more efficiently than classical kernels.
1
1
1
We needed a new approach🧬⚛️. Deep learning models hunger for data. But in genomics, many TFs have sparse ChIP-seq peaks. In fact, ~45% of ENCODE experiments have <10k peaks. Conventional models often overfit or fail to capture motifs in these "low-data" scenarios.
1
0
0
This work is part of my doctoral research at Kyushu University (Nagasaki Lab). We anticipate this paper will be published soon, so if you are interested in this research, please follow me for future updates!🧬🧬🧬
1
0
0
I successfully completed my poster presentation at the ASHG 2025 Annual Meeting in Boston! I shared our findings on Quantum machine learning for robust transcription factor binding prediction. Thank you to everyone who visited my poster and engaged in stimulating discussions.
1
0
1