BiophysTorino Profile Banner
BiophysTorino Profile
BiophysTorino

@BiophysTorino

Followers
9
Following
11
Media
4
Statuses
13

Official profile of the INFN Biophys group at the University of Turin

Turin, Piedmont
Joined June 2024
Don't wanna be here? Send us removal request.
@BiophysTorino
BiophysTorino
29 days
In questi giorni Michele Caselle, Andrea Mazzolini e Filippo Valle sono a #statphys29 (by @TriumphGroupInt ) a raccontare i lavori del nostro gruppo!
Tweet media one
Tweet media two
Tweet media three
0
0
2
@BiophysTorino
BiophysTorino
29 days
Oggi il nostro Filippo Valle ha raccontato il suo contributo all'ultimo numero di Tempo Presente
Tweet media one
0
0
0
@BiophysTorino
BiophysTorino
2 months
📖 È uscito il numero 529-531 di TEMPO PRESENTE dedicato monograficamente al tema FOCUS INTELLIGENZA ARTIFICIALE. Riflessioni di scienziati, giuristi, politici sulle più recenti applicazioni dell’IA a cui ha contribuito il nostro Filippo Valle.
tempopresenterivista.altervista.org
Nel fascicolo contributi di Alberto Aghemo, Giovanni Cirone, Rosario Garra, Pierre Baldi, Piero Fariselli, Giorgio Parisi, Pietro Terna, Filippo Valle, Ivano Menso, Valentina Grippo, Elia Pergola,...
0
0
0
@BiophysTorino
BiophysTorino
2 months
📍Settimana scorsa Flippo Valle ha raccontato il nostro lavoro sul topic modeling al Workshop sul Calcolo @INFN_.💬 È stato un piacere partecipare e confrontarsi su temi centrali per il futuro del calcolo scientifico: HPC 🚀, AI 🤖, cybersicurezza 🔐, cloud ☁️ e sostenibilità 🌱
Tweet media one
Tweet media two
0
0
1
@BiophysTorino
BiophysTorino
4 months
RT @BiophysTorino: 🚨 Our latest research in topic modeling "Exploring the latent space of transcriptomic data with topic modeling" has been….
Tweet card summary image
academic.oup.com
Abstract. The availability of high-dimensional transcriptomic datasets is increasing at a tremendous pace, together with the need for suitable computationa
0
1
0
@BiophysTorino
BiophysTorino
4 months
RT @lpizziniBioPhys: 📝Excited to share that our latest research "Topic modeling analysis of the Allen Human Brain Atlas" is now out on Scie….
nature.com
Scientific Reports - Topic modeling analysis of the Allen Human Brain Atlas
0
1
0
@BiophysTorino
BiophysTorino
4 months
🚨 Our latest research in topic modeling "Exploring the latent space of transcriptomic data with topic modeling" has been accepted on NAR genomics and bioinformatics by @OUPAcademic.
Tweet card summary image
academic.oup.com
Abstract. The availability of high-dimensional transcriptomic datasets is increasing at a tremendous pace, together with the need for suitable computationa
0
1
2
@BiophysTorino
BiophysTorino
6 months
🚨 Our latest research in topic modeling "Topic modeling analysis of the Allen Human Brain Atlas" has been accepted on @SciReports .
nature.com
Scientific Reports - Topic modeling analysis of the Allen Human Brain Atlas
0
0
1
@BiophysTorino
BiophysTorino
9 months
🚨 Our latest research in topic modeling "Exploring the latent space of transcriptomic data with topic modeling" is out on biorxiv.
Tweet card summary image
biorxiv.org
The availability of high-dimensional transcriptomic datasets is increasing at a tremendous pace, together with the need for suitable computational tools. Clustering and dimensionality reduction...
0
0
3
@BiophysTorino
BiophysTorino
1 year
🚨 Our latest study is now available on arXiv! We explore how the Waddington’s landscape can be captured using single-cell RNA-seq. By applying intrinsic dimension analysis, we define a robust cell potency score without prior biological assumptions🧬🔬.
Tweet card summary image
biorxiv.org
Waddington’s epigenetic landscape has long served as a conceptual framework for understanding cell fate decisions. The landscape’s geometry encodes the molecular mechanisms that guide the gene...
0
1
4
@BiophysTorino
BiophysTorino
1 year
Wonderful talk by our PhD student Niccolò Cirone on "Intrinsic Dimension of Cell Differentiation" at Sifs 2024 @unipr . 📄Preprint coming out in July
Tweet media one
0
0
4
@BiophysTorino
BiophysTorino
1 year
We present a method to evaluate node relevance in bipartite networks. 🌐. With a tunable parameter γ, it surpasses existing ranking methods and, with specific γ values, reconstructs measures like degree centrality and the fitness-complexity ranking.
Tweet card summary image
arxiv.org
Ranking nodes in networks according to a defined measure of importance is an extensively studied task, with applications in ecology, economic trade networks, and social networks. This paper...
0
1
3