technikhilesh Profile Banner
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’» Profile
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»

@technikhilesh

Followers
17
Following
15
Media
26
Statuses
189

Discover the magic of AI and tech wonders! πŸ€–βœ¨ Simplifying the future with easy-to-understand updates and cool tech stuff. πŸš€πŸ’» #AITechMagic

Joined October 2014
Don't wanna be here? Send us removal request.
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
RT @SecurityTrybe: Top 9 HTTP Requests Methods
0
302
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
RT @milan_milanovic: π—¦π—€π—Ÿ π—€π˜‚π—²π—Ώπ—Άπ—²π˜€ π—˜π˜…π—²π—°π˜‚π˜π—Άπ—Όπ—» 𝗒𝗿𝗱𝗲𝗿. We utilize SQL queries to access a collection of records stored in our database tables. C….
0
288
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
RT @NikkiSiapno: How to use Big O to ace your technical interviews:. Firstly, what is Big O Notation?. Big O describes an algorithm's runti….
0
162
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
Tweet media one
0
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
RT @shedntcare_: ChatGPT was just the starting point . More than 2000 new AI tools were released in the last 30 days . Here's 30 cutting-ed….
0
384
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
RT @madzadev: 9 AI tools you don't want to miss in 2024 πŸ”₯πŸ”₯. Code: @tabnine. Images: @midjourney. Video: @runwayml. Design: @DesignsdotAI. W….
0
16
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
Hey @Apple, not thrilled with my iPhone 14 Pro Max – battery drains like it's on a race and heating up faster than a microwave. Seriously, not expected this from apple, this will be the first and last apple product for me. πŸ€”πŸ”₯ #iPhoneProblems #NotHappy #Apple.
0
1
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ“Š Hyperparameter Tuning πŸ“Š.Algorithms have settings called hyperparameters that affect performance. Tuning them optimizes the model. Think of it as adjusting knobs for better sound on a stereo. πŸŽ›οΈπŸŽΆ #HyperparameterTuning.
0
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ“Š Cross-Validation πŸ“Š.To ensure our model’s reliability, we use techniques like cross-validation. This divides data into multiple sets for training and testing, reducing the risk of overfitting. It’s like having multiple quizzes! πŸ“šπŸ§ͺ #CrossValidation.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸš€ Beyond Logistic Regression πŸš€.While Logistic Regression is great, more complex algorithms like Random Forest or Neural Networks can capture intricate patterns. Experiment with various models to find the best fit for your data! 🌲🧠 #ExploreModels.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ“‰ Model Improvement πŸ“‰.By adding the β€œTotalPurchaseAmount” feature, our model might better understand customers’ spending behaviors. It’s incredible how a single tweak can enhance accuracy and predictions! πŸ“ŠπŸ’‘ #ModelImprovement.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
# Feature engineering.data['TotalPurchaseAmount'] = data['PastPurchases'] * data['AveragePurchaseAmount']. # Update X with the new feature.X = data[['Age', 'TotalPurchaseAmount']]. # Split data.X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ“š Creating New Features πŸ“š.In our example, we could create a β€œTotalPurchaseAmount” feature by combining β€œPastPurchases” and β€œAveragePurchaseAmount”. This might help the model capture spending patterns better. πŸ’°πŸ“ˆ #NewFeatures.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ”— Feature Engineering πŸ”—.Ever wondered how to improve predictions? That’s where feature engineering comes in! By creating new features from existing data, you provide your model with richer information to learn from. Let’s dive in! πŸ› οΈπŸ” #FeatureEngineering.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
🌐 Real-World Impact 🌐.Imagine applying this model to customer data in a retail store. It could help target promotions, leading to increased sales. That’s the magic of ML – it transforms data into actionable insights! πŸ“Šβœ¨ #MLMagic.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ”Ž Interpretation & Improvement πŸ”Ž.After running the code, you’ll see the model accuracy. This is a good starting point, but it’s essential to dig deeper. Are there other features that could enhance predictions? Experiment and iterate! πŸ•΅οΈβ€β™‚οΈπŸ”„ #IterateImprovement.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ“Š Model Training & Evaluation πŸ“Š.By using the .fit() method, we train our model on the training data. Then, we use the .score() method to evaluate its accuracy on the testing data. The output tells us how well our model is performing. πŸ“šπŸ“ #ModelTraining.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ”€ Data Splitting πŸ”€.Notice how we split our data into training and testing sets using train_test_split. This ensures that our model learns from one set and gets tested on another, preventing it from memorizing the answers! πŸ§©πŸ“Š #DataSplit.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ“š Logistic Regression πŸ“š.In our code, we imported the LogisticRegression class from the Scikit-Learn library. This algorithm is great for binary classification tasks, like predicting whether a customer will buy or not. πŸ”„πŸ” #LogisticRegression.
1
0
0
@technikhilesh
β„•π•šπ•œπ•™π•šπ•π•–π•€π•™ πŸ‘¨β€πŸ’»
2 years
πŸ› οΈ Hands-on ML Example πŸ› οΈ.Let’s take a closer look at the code snippet from before. In this example, we’re using a simple Logistic Regression model to predict customer purchases based on age and past purchases. πŸ“ˆπŸ’» #HandsOnML.
1
0
0