superflow Profile Banner
Vitaliy Kaurov Profile
Vitaliy Kaurov

@superflow

Followers
969
Following
1K
Media
185
Statuses
753

Curious. Entangled. Chief Editor @ Wolfram Staff Picks. Physicist.

Joined May 2009
Don't wanna be here? Send us removal request.
@superflow
Vitaliy Kaurov
1 year
ROBOT's shortest path in obstacle field mapped by Dijkstra's algorithm. It was long assumed that the most efficient way to find best routes in graphs is Dijkstra algorithm. But it's optimality was proven only in 2023, in a work that won best-paper award. https://t.co/0JxgAvqRBW
18
261
2K
@superflow
Vitaliy Kaurov
1 month
โš›๏ธ In ๐ซ๐ข๐ฏ๐ž๐ซ ๐ฆ๐จ๐๐ž๐ฅ of ๐›๐ฅ๐š๐œ๐ค ๐ก๐จ๐ฅ๐ž๐ฌ space itself flows... River of space falls into black hole at Newtonian escape velocity, hitting light speed at horizon. Newton particle-grid with Wolfram differential equations gives a qualitative proxy for the visual: ๐Ÿ”ด
0
0
2
@superflow
Vitaliy Kaurov
4 months
How-to "see" 4th dimension in simple steps: ...using ๐Ÿ๐š๐ฆ๐ข๐ฅ๐ข๐š๐ซ ๐จ๐›๐ฃ๐ž๐œ๐ญ๐ฌ. 1๏ธโƒฃ This 4D object = donut; 2๏ธโƒฃ Cut typical 3D donut across its tube; 3๏ธโƒฃ The shape of the cut is usual 2D circle; 4๏ธโƒฃ Generalize by +1: cut 4D donut and get 3D shapes at the cut. Which is similar
0
0
3
@superflow
Vitaliy Kaurov
4 months
๐“œ๐š๐ง๐๐ž๐ฅ๐›๐ซ๐จ๐ญ fractal encodes ๐“™๐ฎ๐ฅ๐ข๐š fractals. Video: ๐ฐ๐ก๐ข๐ญ๐ž ๐๐จ๐ญ in ๐“œ defines connectivity of ๐“™. Both ๐“œ and ๐“™ fractals are defined as ๐™ โ†ฆ ๐™ยฒ+ ๐‚ The difference? ๐“œ plots ๐‚, and ๐“™ plots ๐™. The white dot (parameter ๐‚) travels in ๐“œ set (corners) and
3
4
15
@superflow
Vitaliy Kaurov
4 months
๐“๐จ๐ค๐ฒ๐จ ๐ฌ๐ฎ๐›๐ฐ๐š๐ฒ is 99% on-time, world's best. But how lines can be shaped by ๐„๐๐จ ๐๐ž๐ซ๐ข๐จ๐ (1603โ€“1868)? Try to guess before reading further ๐Ÿ‘‡ Each dot is a train (real data) ramping up to one of the world highest peak frequencies. Goes ~40m deep. Tokyo's subway
1
0
4
@superflow
Vitaliy Kaurov
4 months
๐ŸŸฅ or ๐ŸŸฆ floats above the other? This stereo illusion (๐œ๐ก๐ซ๐จ๐ฆ๐จ๐ฌ๐ญ๐ž๐ซ๐ž๐จ๐ฌ๐ข๐ฌ) needs both eyes: close one and illusion is gone. ๐๐จ๐ข๐๐ฌ or ๐ฌ๐ฐ๐š๐ซ๐ฆ ๐ข๐ง๐ญ๐ž๐ฅ๐ฅ๐ข๐ ๐ž๐ง๐œ๐ž type algorithm used in simulation - expand for tiny code๐Ÿ‘‡ Wolfram Mathematica code (do you
1
1
4
@superflow
Vitaliy Kaurov
7 months
๐Š๐ž๐ฆ๐ฉ๐ž'๐ฌ ๐ฎ๐ง๐ข๐ฏ๐ž๐ซ๐ฌ๐š๐ฅ๐ข๐ญ๐ฒ ๐ญ๐ก๐ž๐จ๐ซ๐ž๐ฆ: There is a ๐ฅ๐ข๐ง๐ค๐š๐ ๐ž that signs your name. Proves a linkage exists to draw any algebraic planar curve. But to prove is NOT to design elegantly. Novel elegant method: https://t.co/VsT4Xw1SDM
0
2
9
@superflow
Vitaliy Kaurov
7 months
๐–๐จ๐ฅ๐Ÿ๐ซ๐š๐ฆ code is very short: ๐•’[1] = RandomReal[1, 20 {1, 1, 1}]; ๐•’[n_] := ๐•’[n] = Rescale[๐•’[n - 1] - GradientFilter[๐•’[n - 1], 2]] Manipulate[๐•’[k]^10 // Image3D, {k, 1, 700, 1}] Full original discussion by ๐’๐ข๐ฆ๐จ๐ง ๐–๐จ๐จ๐๐ฌ: https://t.co/ob7phnKluR
0
0
5
@superflow
Vitaliy Kaurov
7 months
In the video this recursion is applied many times to a 3D table of values, shown as 3D image. ๐’๐ญ๐š๐›๐ฅ๐ž ๐ฌ๐ฉ๐ข๐ซ๐š๐ฅ๐ฌ ๐ž๐ฆ๐ž๐ซ๐ ๐ž. Video runs evolution backwards to the initial random values, and then forward in time with slightly different visualization technique.
0
0
3
@superflow
Vitaliy Kaurov
7 months
๐Œ๐š๐ญ๐ก ๐ƒ๐ž๐ญ๐ž๐œ๐ญ๐ข๐ฏ๐ž wanted! Why recursion makes spirals? a[n_] := Rescale[ a[n - 1] - GradientFilter[a[n - 1], 2] ] 1๏ธโƒฃ ๐š --matrix or tensor of values โˆˆ [0, 1] 2๏ธโƒฃ ๐‘๐ž๐ฌ๐œ๐š๐ฅ๐ž --keeps ๐š values โˆˆ [0, 1] 3๏ธโƒฃ ๐†๐ซ๐š๐๐ข๐ž๐ง๐ญ๐…๐ข๐ฅ๐ญ๐ž๐ซ --discrete data gradient
3
10
41
@superflow
Vitaliy Kaurov
9 months
๐ƒ๐ž๐ฅ๐š๐ฎ๐ง๐š๐ฒ ๐Ÿ”ฒ & ๐•๐จ๐ซ๐จ๐ง๐จ๐ข ๐ŸŸฆ meshes are DUALS of each other. ๐˜ค๐˜ฐ๐˜ณ๐˜ณ๐˜ฆ๐˜ด๐˜ฑ๐˜ฐ๐˜ฏ๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐Ÿ”ฒ & ๐ŸŸฆ edges are โŠฅ. ๐Ÿ”ฒ vertices <=> ๐ŸŸฆ cells. ๐Ÿ”ฒ triangles <=> ๐ŸŸฆ vertices. CODE: https://t.co/rpJFboewkQ
1
7
29
@superflow
Vitaliy Kaurov
9 months
Twist bottom (left) ring into top shape and its 4 colored lines become 1. Cut along this line - ring remains single object. Cut many times - get ๐‚๐š๐ง๐ญ๐จ๐ซ ๐ƒ๐ฎ๐ฌ๐ญ ๐…๐ซ๐š๐œ๐ญ๐š๐ฅ. 3D objects with ๐Œรถ๐›๐ข๐ฎ๐ฌ ๐ฌ๐ญ๐ซ๐ข๐ฉโ€“๐ฅ๐ข๐ค๐ž characteristics. https://t.co/dRlSDyDQ8F
0
5
15
@superflow
Vitaliy Kaurov
9 months
Haiku for ๐•๐จ๐ซ๐จ๐ง๐จ๐ข ๐ƒ๐ข๐š๐ ๐ซ๐š๐ฆ: ๐˜๐˜ฏ๐˜ฌ ๐˜ฅ๐˜ณ๐˜ฐ๐˜ฑ๐˜ด ๐˜ฐ๐˜ง ๐˜ค๐˜ฐ๐˜ญ๐˜ฐ๐˜ณ๐˜ด โ€ข ๐˜ด๐˜ฑ๐˜ณ๐˜ฆ๐˜ข๐˜ฅ ๐˜ต๐˜ฉ๐˜ณ๐˜ฐ๐˜ถ๐˜จ๐˜ฉ ๐˜ฑ๐˜ข๐˜ฑ๐˜ฆ๐˜ณ ๐˜ท๐˜ฆ๐˜ช๐˜ฏ๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฎ๐˜ฆ๐˜ฆ๐˜ต โ€ข ๐˜ข๐˜ต ๐˜๐˜ฐ๐˜ณ๐˜ฐ๐˜ฏ๐˜ฐ๐˜ช ๐˜ธ๐˜ฆ๐˜ฃ Named after ๐”๐ค๐ซ๐š๐ข๐ง๐ข๐š๐ง. Ubiquitous: fire stations, protein packing, more https://t.co/y9Jx2NbJco
0
3
10
@superflow
Vitaliy Kaurov
10 months
๐ŸŒ“TODAY & ONCE in 2.5 years! Grab those grandpa binoculars. Go outside! Bring friends. ๐Ÿ๐ŸŽ-๐ฌ๐ž๐œ๐จ๐ง๐ ๐ฏ๐ข๐๐ž๐จ ๐ ๐ฎ๐ข๐๐ž, Wolfram-made for ๐˜ธ๐˜ฉ๐˜ข๐˜ต, ๐˜ธ๐˜ฉ๐˜ฆ๐˜ฏ, ๐˜ธ๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ in the sky. Don't miss Americas' night show. Explore: https://t.co/k5VtON3uaV
0
3
9
@superflow
Vitaliy Kaurov
10 months
harmful proteins. Built in Wolfram Language with GPU acceleration, this method accelerates simulation of rare transitions. Valuable for drug design. On image attached: putative low free-energy path of the CRBN open-close conformational transition. https://t.co/D7N51vj7UB
0
0
2
@superflow
Vitaliy Kaurov
10 months
landscape for physically realistic protein changes. Cereblon protein (CRBN) plays important role in targeted protein degradation. The research maps its transition between open and closed states, a process critical for how molecular glue drugs trigger the breakdown of...
1
0
0
@superflow
Vitaliy Kaurov
10 months
Tech details... This work boosts (classical) molecular dynamics with AI using a physics-informed autoencoder neural network that compresses complex 3D protein structures into a simplified latent space. Key idea is aligning the latent space with the proteinโ€™s free energy...
1
0
0
@superflow
Vitaliy Kaurov
10 months
AlphaFold2 (2024 Nobel Prize) predicts protein shape. This AI predicts motionโ€”how proteins shift between shapes. Motion is key to drug design. Wolfram neural net accelerates the search for optimal transitions. https://t.co/D7N51vjFK9
3
8
31
@superflow
Vitaliy Kaurov
10 months
...and here for the context โ€œAll roads lead to Lyonโ€ Great examples of "large city" road cluster. In contrast my map is a cluster around population zero. https://t.co/2f93FQsJCD
0
0
2
@superflow
Vitaliy Kaurov
10 months
For the context this is โ€œAll roads lead to Romeโ€: https://t.co/GTpyjSAoAI
1
0
2
@superflow
Vitaliy Kaurov
10 months
In my article, I compute shortest paths from over 37,000 North American cities to Nothing, Arizonaโ€”a ghost town with zero populationโ€”to show that the clustering effect is independent of the destinationโ€™s size, offset maybe only nearest highway intersection.
1
0
1