arXiv math.AG Algebraic Geometry
@mathAGb
Followers
2K
Following
0
Media
0
Statuses
52K
Unofficial bot by @vela with https://t.co/qRyAuN2QxC. @mathACb @mathAPb @mathATb @mathCAbot @mathCObot @mathCTbot @mathCVb @mathDGb @mathDSb @mathFAbot ...
Joined March 2013
L. Costa, I. Mac\'ias Tarr\'io, L. Roa-Leguizam\'on: Some moduli spaces of $\alpha$-stable coherent systems on algebraic surfaces https://t.co/3p5XzwJZUS
https://t.co/FxEbFXxtb8
arxiv.org
Let $X$ be a smooth, irreducible, projective algebraic surface, and let $α\in \mathbb{Q}[m]_{>0}$ be a polynomial. In this paper, we determine topological and geometric properties of the...
0
0
3
Valery Alexeev: A tower of complete moduli spaces of Calabi-Yau $n$-folds https://t.co/JBLGxcFjaL
https://t.co/rKzOB1Rod0
arxiv.org
We generalize to dimensions $n\ge3$ the compactified moduli stack of elliptic curves $\overline{M}_{1,1}=\mathbb{P}(4,6)$ and Brieskorn's family of $U\oplus E_8$-polarized K3 surfaces over a...
0
1
11
Yi Yao: The maximal destabilizers for Chow and K-stability https://t.co/cbfr38opj3
https://t.co/gTJIVGSCMv
arxiv.org
Donaldson showed that the constant scalar curvature Kähler metrics can be quantized by the balanced Hermitian norms on the spaces of global sections. We explore an analogous problem in the...
0
0
8
Tasuki Kinjo: Multiplicative dimensional reduction https://t.co/7c2HR8lvIX
https://t.co/WWjF8VT1Xy
arxiv.org
We prove the multiplicative version of the dimensional reduction theorem in cohomological Donaldson--Thomas theory. More precisely, we show that the BPS cohomology associated with the loop stack...
0
3
43
Sarunas Kaubrys: Exponential map in DT theory https://t.co/zimayOasog
https://t.co/INMvVzoJYX
arxiv.org
This paper studies the Cohomological Donaldson-Thomas theory of loop stacks of $0$-shifted symplectic stacks. In particular, we compare $(-1)$-shifted tangent stacks of these moduli problems,...
0
2
13
Jiahe Wang: Jordan constants for volume-preserving Cremona groups https://t.co/ts3IcBdVlL
https://t.co/BF1rkGgc5d
arxiv.org
We show that the optimal Jordan constant for the volume-preserving plane Cremona group $\mathrm{Bir}(\mathbb P^2, Δ)$ is 12. We provide a Jordan constant of $60$ for the three-dimensional...
0
0
9
Elizabeth Pratt, Kexin Wang: Avoidance Loci of Real Projective Varieties https://t.co/4Zk4LJ4kYu
https://t.co/n3hwzewu8H
arxiv.org
We study real linear spaces in projective space that avoid the real points of a non-degenerate projective variety. For a variety $X \subset \mathbb{P}^{n-1}$ with a real smooth point, we define...
0
2
15
Fuensanta Aroca, Annel Ayala, Oscar Casta\~n\'on, Dami\'an Ochoa, Diana Mendez Penagos, Camille Pl\'enat: Normalization of Puiseux Hipersurfaces https://t.co/gdsnCCTzsS
https://t.co/4pMBiQt085
arxiv.org
It is known that the normalization of a quasi-ordinary complex singularity is a Hirzebruch-Jung, see [Gon00; Pop04; AS05]. We extend this result to Puiseux hypersurfaces. Moreover, we prove that...
0
0
11
Max Schwegele: Semistable Reduction of Plane Quartics https://t.co/fw8xIjuZaL
https://t.co/USLgwopCp4
arxiv.org
The Stable Reduction Theorem guarantees that any smooth, projective, geometrically irreducible curve of genus $g \geq 2$ over a discretely valued field admits a unique stable model after a finite...
0
0
6
Luca Chiantini, {\L}ucja Farnik, Giuseppe Favacchio, Brian Harbourne, Juan Migliore, Tomasz Szemberg, Justyna Szpond: Intersection of curves in projective 4 space https://t.co/HC6NC6MLlp
https://t.co/gKnjPhnlWt
arxiv.org
Given two distinct reduced, irreducible curves of given degrees, contained in projective space but whose union is not contained in a hyperplane, what is the largest number of points of...
0
1
9
[2025-11-21 Fri (UTC), 10 new articles found for mathAG Algebraic Geometry]
0
0
1
Aravind Asok, Jean Fasel, Samuel Lerbet: Splitting vector bundles over real algebraic varieties https://t.co/Lz8b5DxedL
https://t.co/DPhI1IH9gh
0
1
5
Narasimha Chary Bonala, S Senthamarai Kannan, Santosha Pattanayak: On the GIT quotient of Grassmannians by one dimensional torus https://t.co/JP0OfQPX9I
https://t.co/7vHGGzCZ3X
0
0
5
Xiaohuan Long, Yibin Wang, Xiangdong Wu, Ru Yi: $G$-gerbes on perfectoid spaces https://t.co/eXAIu9AF3G
https://t.co/PraN0iq2FU
0
0
2
Joaqu\'in Moraga, Juan Pablo Z\'u\~niga: Degenerations of cluster type varieties https://t.co/g4rlOov3fB
https://t.co/vH4QfB8BD1
0
0
4
[2025-11-20 Thu (UTC), 4 new articles found for mathAG Algebraic Geometry]
0
0
1
Benjamin Antieau: Filtrations and cohomology II: the Gauss-Manin connection https://t.co/C0ZeTj7Q90
https://t.co/4LfRBVgNiG
arxiv.org
We use derived methods to study the Gauss-Manin connection in Hochschild homology, infinitesimal cohomology, and derived de Rham cohomology. As applications, we give new approaches to...
0
1
10
Pierre Colmez, Sally Gilles, Wies{\l}awa Nizio{\l}: Une conjecture $C_{\rm st}$ pour la cohomologie \`a support compact https://t.co/gkTYgZ91RF
https://t.co/2AAebq7py8
arxiv.org
Let $\mathbf{B}$ be the ring of analytic functions on the Fargues-Fontaine curve $Y_{\rm FF}$. We show that adding $p$-adic analogs of $\log p$ and $\log 2πi$ kills its Galois cohomology in...
0
2
9
Chenjing Bu, Young-Hoon Kiem: Generalized intersection pairings on moduli spaces of vector bundles over a curve https://t.co/oe4Um4ugKb
https://t.co/kmTpGap6Ll
arxiv.org
We introduce the notion of a generalized intersection pairing for an Artin stack with a proper good moduli space and nonempty stable part. For the moduli stack of semistable bundles over a smooth...
0
0
9
Yiming Zhu: On quasi-Albanese morphisms for log canonical Calabi-Yau pairs https://t.co/IjTzg0oCaF
https://t.co/fmYPuCcjSP
arxiv.org
We study the quasi-Albanese morphisms for log canonical Calabi-Yau pairs.
0
0
3