Explore tweets tagged as #numpy
@__ambrosio
Ambrosio
15 days
Bibliotecas Python Essenciais para Ciência de Dados. Bibliotecas Principais.1. NumPy.2. Pandas. Visualização de Dados. 3. Matplotlib.4. Seaborn.5. Plotly. ML. 6. Scikit-learn.7. XGBoost.8. LightGBM.9. CatBoost.10. PyCaret .11. Auto-sklearn.12. H2O.13. TPOT .14. Optuna.15. FLAML
Tweet media one
2
39
582
@lazy_Neuron
Lazy_neuron
16 days
ML newbie’s looking at LLM architecture after learning NumPy
Tweet media one
6
13
202
@quantscience_
Quant Science
35 minutes
The math behind the Python Quant Scientist Stack:. • SciPy: $0.• Zipline: $0.• Python: $0.• NumPy: $0.• PyFolio: $0.• pandas : $0.• OpenBB: $0.• Empyrical: $0.• AlphaLens: $0.• Statsmodels: $0.• RiskFolio-Lib: $0. You can start algorithmic trading for free. Want help?
Tweet media one
5
3
35
@developer_quant
QDくん⚡️AI関連の無料教材紹介
2 days
Pythonのライブラリを大量に解説した長編テキスト(276ページ)が無料公開されている. Python3 ライブラリブック. ・OpenCV.・Pillow.・pygame.・Eel.・PyDub.・NumPy.・matplotlib.・SciPy.・SymPy.・hashlib.・passlib.・Cython.・Numba.・ctypes.・PyInstaller
Tweet media one
Tweet media two
Tweet media three
Tweet media four
0
34
276
@SalahDataMl
Data with Salah
6 hours
NumPy Cheat Sheet
Tweet media one
0
0
3
@PythonPr
Python Programming
3 days
Numpy Cheat Sheet .#python #numpy
Tweet media one
4
63
354
@mrsiipa
maharshi
11 days
some backstory: when i first started to use numpy (a bit after my 12th grade) i was surprised to see how fast it was and most importantly, how it handled n-dimensional arrays not just two. i remember writing a simple matmul in C and thinking what would it take to go from two to
Tweet media one
35
84
3K
@kanthi_paliki
Kanthi Deepika
23 hours
🚀Day-4 :. Of my Python Learning Journey .--> Numpy fundamental library for scientific computing . 🌐.👉 Supports multi-dimensional arrays.👉 Super fast mathematical operations.👉 Great for data analysis, machine learning, and scientific computing
Tweet media one
0
0
2
@freeCodeCamp
freeCodeCamp.org
2 days
If you want to improve your Data Science and Python skills, this course is for you. You'll use popular Python libraries like Pandas, scikit-learn, and NumPy to extract and clean data, then analyze it. You'll also learn about grouping & aggregation functions, merging datasets,
Tweet media one
3
106
614
@madhav1
Fate
14 days
my RoPE implementation with just numpy
Tweet media one
@madhav1
Fate
15 days
learning RoPE today
Tweet media one
8
2
42
@neuralpat
pat
5 days
30 days update ✅. • finished basics of python, pandas & numpy. • trained my first linear regression model. • started learning scikit-learn. • solved 1000+ math Qs (linear algebra, calculus).• started probability & stats. • crossed 250. thank y’all ❤️
Tweet media one
Tweet media two
Tweet media three
2
1
6
@eloffd
Eloff
22 hours
Python is slow. C is fast. But Python library X (e.g. numpy) is fast. Yes, I said C is fast.
Tweet media one
5
1
11
@AapsiK
Aapsi (आपसी)
4 days
Throwback to 2019 when I built my first Python project - A paint application using opencv and numpy
Tweet media one
1
0
5
@mehmetsongur_
Mehmet Songur
9 days
Python Data Science Handbook ile IPython, NumPy, Pandas, Matplotlib ve Scikit-Learn ile veri bilimine sağlam bir giriş yap!.Ücretsiz, açık kaynak ve Jupyter not defterleriyle uygulamalı. 🔗
Tweet media one
0
11
53
@Kawsar_Ai
Kawsar
2 days
6. Machine Learning Specialization. Learners will be able to:.➜ Build ML models using Python libraries like NumPy and scikit-learn. ➜ Train neural networks with TensorFlow for multi-class classification.​.
1
5
22
@Himanshi1286
Himanshi
8 days
🚀 Day 22 Progress.Learnt Pandas & NumPy in my Data Science course 📊.✔️ Worked on DataFrames 💻.⚡ Less time these days, but still trying my best ⏳.Streak alive 💪.#100DaysOfCode #Python #DataScience #Pandas #NumPy
Tweet media one
Tweet media two
5
0
32
@lazy_Neuron
Lazy_neuron
8 days
Punched a web3 guy because he said ML is all about importing NumPy as np
Tweet media one
108
44
1K
@BowTied_Raptor
BowTied_Raptor|Data Science & Machine Learning 101
15 days
For MLE roles, your resume needs to speak both engineering and ML. Recruiters (and ATS) skim for specific tools, so make sure you include the right ones. At a minimum, your resume should mention Python, SQL, NumPy, Pandas, scikit-learn, and either PyTorch or TensorFlow. If
Tweet media one
0
1
4
@hassanahmed0008
Hassan Ahmed Qureshi
11 hours
🎫NumPy Series. np.random.random((i, j)) generates random floating point numbers between 0 and 1. > When to use it?. 1. Random sampling → pick probabilities. 2. Initializing weights in ML models. 3. Data augmentation → adding random noise. #AI #buildinpublic #datascience #Numpy
Tweet media one
0
0
2