NavidAzizan Profile Banner
Navid Azizan Profile
Navid Azizan

@NavidAzizan

Followers
2K
Following
277
Media
21
Statuses
101

MIT Prof | AI & machine learning, systems & control, optimization | Fmr postdoc @Stanford, PhD @Caltech

Cambridge, MA
Joined June 2018
Don't wanna be here? Send us removal request.
@NavidAzizan
Navid Azizan
4 months
Introducing Instance-Adaptive Inference-Time Scaling! Paper: https://t.co/0mGdkUjMXK Code: https://t.co/uENXKuoL0T
@young_j_park
Young-Jin Park
5 months
๐Ÿง  Inference-time scaling lets LLMs spend more compute to solve harder problems, but not every question needs that! After all, we donโ€™t use a whiteboard to solve 1 + 1. So why should an LLM? Introducing Instance-Adaptive Inference-Time Scaling, a smarter way to allocate
0
2
16
@NavidAzizan
Navid Azizan
1 year
In collaboration with the @MITIBMLab, thanks to the one and only @HW_HaoWang!
0
0
5
@NavidAzizan
Navid Azizan
1 year
Tweet card summary image
github.com
Contribute to azizanlab/repreli development by creating an account on GitHub.
@MITLIDS
MIT LIDS
1 year
How to assess a general-purpose AI modelโ€™s reliability before itโ€™s deployed. A new technique from MIT LIDS researchers @NavidAzizan and Young-Jin Park enables users to compare several large models and choose the one that works best for their task. https://t.co/AHEqwkFYkS
2
3
16
@young_j_park
Young-Jin Park
1 year
Wondering when to trust pre-trained AI models and how to assess their reliability before deployment? Check out our work at #UAI2024! If youโ€™re in Barcelona, visit my poster (#368) tomorrow!! ๐Ÿ”— Read More: https://t.co/qSW0IH51zj (Paper), https://t.co/SD8ioXjaWM (MIT News).
Tweet card summary image
news.mit.edu
A new technique estimates the reliability of a self-supervised foundation model, like those that power ChatGPT, without the need to know what task that model will be deployed on later.
1
3
4
@NavidAzizan
Navid Azizan
2 years
๐Ÿ“ข Still a few days left to apply for our postdoc position: https://t.co/8GYqB9Nz9N Candidates who wish to be considered for the "MIT Postdoctoral Fellowship for Engineering Excellence" may also apply here and list my name: https://t.co/uquuPYdNlv Deadline: Jan 31 @MIT @MIT_SCC
0
10
39
@NavidAzizan
Navid Azizan
2 years
Fri, Dec 15, 17:20-17:40: ๐Ž๐ง ๐ญ๐ก๐ž ๐‚๐จ๐ง๐ฏ๐ž๐ซ๐ ๐ž๐ง๐œ๐ž ๐‘๐š๐ญ๐ž ๐จ๐Ÿ ๐ƒ๐ข๐ฌ๐ญ๐ซ๐ข๐›๐ฎ๐ญ๐ž๐ ๐‹๐ข๐ง๐ž๐š๐ซ ๐’๐ฒ๐ฌ๐ญ๐ž๐ฆ ๐’๐จ๐ฅ๐ฏ๐ž๐ซ๐ฌ Session: Distributed Control III (Roselle Junior 4711) ๐๐จ๐ซ๐ข๐ฌ ๐•๐ž๐ฅ๐š๐ฌ๐ž๐ฏ๐ข๐œ (MIT) https://t.co/6aVJftw3Mw
1
0
3
@NavidAzizan
Navid Azizan
2 years
Fri, Dec 15, 10:20-10:40: ๐ƒ๐š๐ญ๐š-๐ƒ๐ซ๐ข๐ฏ๐ž๐ง ๐‚๐จ๐ง๐ญ๐ซ๐จ๐ฅ ๐ฐ. ๐ˆ๐ง๐ก๐ž๐ซ๐ž๐ง๐ญ ๐‹๐ฒ๐š๐ฉ๐ฎ๐ง๐จ๐ฏ ๐’๐ญ๐š๐›๐ข๐ฅ๐ข๐ญ๐ฒ Session: Data-Driven Verification & Control of Cyber-Physical Systems (Orchid Main 4202-4303) ๐˜๐จ๐ฎ๐ง๐ ๐ฃ๐š๐ž ๐Œ๐ข๐ง (MIT) @youngjaem0 https://t.co/WQDMXYpvli
1
1
9
@NavidAzizan
Navid Azizan
2 years
Today, Dec 14, 16:20-16:40: ๐Ž๐ง๐ฅ๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐Ÿ๐จ๐ซ ๐„๐ช๐ฎ๐ข๐ฅ๐ข๐›๐ซ๐ข๐ฎ๐ฆ ๐๐ซ๐ข๐œ๐ข๐ง๐  ๐ฎ๐ง๐๐ž๐ซ ๐ˆ๐ง๐œ๐จ๐ฆ๐ฉ๐ฅ๐ž๐ญ๐ž ๐ˆ๐ง๐Ÿ๐จ๐ซ๐ฆ๐š๐ญ๐ข๐จ๐ง Session: Learning, Optimization, & Game Theory (Orchid Main 4202-4306) ๐‡๐š๐จ๐ฒ๐ฎ๐š๐ง ๐’๐ฎ๐ง (MIT) https://t.co/Ze7Q4T47Xg
1
0
3
@NavidAzizan
Navid Azizan
2 years
๐Ÿš€Excited to be @IEEECDC2023 in Singapore with three of my brilliant students presenting their papers today and tomorrow! (See details below) P.s. Yes, we ditched @NeurIPSConf this year, sorry! #IEEECDC2023 #CDC2023
1
1
27
@MIT
Massachusetts Institute of Technology (MIT)
2 years
A new machine-learning technique can efficiently learn to control a robot, leading to better performance. Using this method, โ€œweโ€™re able to naturally create controllers that function much more effectively in the real world,โ€ Navid Azizan says. https://t.co/bkSQV8ylLH
3
27
94
@NavidAzizan
Navid Azizan
2 years
If you are at #ICML2023, check out our oral by @spenMrich! Schedule:
@spenMrich
Spencer M. Richards
2 years
Excited to present "Learning Control-Oriented Dynamical Structure from Data" next week at #ICML2023! We enforce factorized structure in learned dynamics models to enable performant nonlinear control. Paper: https://t.co/f79wPtohz9 Code (w/ #JAX): https://t.co/jqorikwxt5
0
1
7
@NavidAzizan
Navid Azizan
2 years
@young_j_park
Young-Jin Park
2 years
The key insight is to use shared neighboring points as anchors to align different representation spaces. 5/6
0
0
3
@NavidAzizan
Navid Azizan
2 years
When can we trust the output representations of "foundation models"? Turns out one may be able to tell: https://t.co/EHpD7XUMWg Skillfully done by my wonderful student @Young_J_Park @MIT & the amazing @HW_HaoWang of @MITIBMLab See the๐Ÿงตbelow
@young_j_park
Young-Jin Park
2 years
So many pre-trained models fueling diverse downstream tasks! When can we confidently trust and leverage these models? ๐Ÿค” Check it out! โ€œRepresentation Reliability and Its Impact on Downstream Tasksโ€ ( https://t.co/kloJzG6JUG) @HW_HaoWang, @ShervinArdeshir, and @NavidAzizan
1
8
30
@StatMLPapers
Stat.ML Papers
2 years
SketchOGD: Memory-Efficient Continual Learning. (arXiv:2305.16424v1 [cs.LG])
0
1
7
@MITMechE
MIT MechE
2 years
Professor Navid Azizan has been selected as the 2023 Outstanding UROP Faculty Mentor. UROP (Undergraduate Research Opportunities Program) students nominate research mentors who have demonstrated exceptional guidance and teaching in a research setting each spring.
0
3
35
@NavidAzizan
Navid Azizan
3 years
Youngjae will be presenting his work on one-pass learning at 2:50-3:10pm https://t.co/C6lVAY7Srq
@youngjaem0
Youngjae Min
3 years
Can we learn sequentially available data without retraining on previous datapoints? We propose ๐—ข๐—ฅ๐—™๐—ถ๐˜ (Orthogonal Recursive Fitting), an algorithm for "one-pass" learning which seeks to fit every new datapoint while minimally changing the predictions on previous data. 1/3
0
1
2
@NavidAzizan
Navid Azizan
3 years
If you are at #CDC22 @CSSIEEE, come to the invited session on ๐‘๐ž๐œ๐ž๐ง๐ญ ๐€๐๐ฏ๐š๐ง๐œ๐ž๐ฌ ๐ข๐ง ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ง๐ ๐‚๐จ๐ง๐ญ๐ซ๐จ๐ฅ at ๐Ÿ:๐Ÿ‘๐ŸŽ-๐Ÿ‘:๐Ÿ‘๐ŸŽ๐ฉ๐ฆ in Tulum Ballroom ๐„ w. @KaiqingZhang @guannanqu & @AdamWierman #CDC2022
1
1
19