Juri Marcucci
@JuriMarcucci
Followers
753
Following
10K
Media
88
Statuses
582
Economist at the Bank of Italy working on Big data, Machine Learning and NLP applied to economics & finance. Views are my own. RT = I want to keep track of it.
Joined December 2012
8/ ๐ Want to know more about the @AMLEDS1 initiative? Check out the full program, past recordings & upcoming webinars here: ๐ https://t.co/Wp7YEQQFFi
#EconTwitter #webinar #LLMs #AI #AMLEDS #Datascience #MachineLearning
sites.google.com
Upcoming event: Webinar: Tara M. Sinclair (George Washington University) - "FOMC in Silico: A Multi-Agent System for Monetary Policy Decision Modeling" 11:00 EST / 16:00 GMT / 17:00 CET,ย November 21,...
0
0
0
7/ Donโt miss this conversation at the frontier of monetary policy + #AI + multi-agent systems. ๐๏ธ Friday, Nov 21 ๐ 11 AM ET / 5 PM CET ๐๏ธ @TaraSinc & @SophiaKazinnik ๐ค Moderator: @dahi_chuda
#MonetaryPolicy #Macroeconomics #AI #LLMs #CentralBanking #DataScience #EconTwitter
1
0
0
6/ ๐ The result? A credible in silico environment to: โ test counterfactual monetary policy scenarios โ explore institutional design โ study persuasion, norms & career incentives โ compare behavioral vs. rational outcomes #EconTwitter #LLMs #AI #NLP
1
0
0
5/ ๐ฅ Findings โข In baseline conditions โ both tracks converge within the 4.25โ4.50% policy range โข Political-pressure โ more dissent, greater dispersion โข Labor-market data revisions โ dovish drift but still inside the range #LLMs reveal subtle frictions #EconTwitter #AI
2
0
0
4/ Both systems start from identical priors constructed using: โข macro indicators โข Beige Book intelligence โข #FOMC speeches โข member-specific profiles This allows a clean comparison of behavioral vs. rational dynamics. #EconTwitter #LLMs #AI #NLP
1
0
0
3/ ๐ Whatโs the paper about? It builds a dual-track framework to simulate FOMC decision-making using: 1๏ธโฃ #LLM-driven agents Debate, persuasion, personality heterogeneity, & real-time macro data โ all embedded in deliberation. 2๏ธโฃ A Bayesian Monte Carlo voting model #EconTwitter
1
0
0
2/ A small plot twist: due to a last-minute change, the session will be moderated by @dahi_chuda (@BrandeisU) โ proving once again that macroeconomists are exceptionally good at handling shocks, even outside DSGE models. #EconTwitter #LLMs #AI #NLP
1
0
0
1/ ๐ข This Friday! Join us for the next #AMLEDS #webinar featuring @TaraSinc (GWU) presenting her #FOMC In Silico" paper with @SophiaKazinnik (@Stanford). ๐ 11AM ET-5PM CET ๐ป Zoom ๐ Paper โ https://t.co/TXV4N68M3k
#EconTwitter #AI #LLMs #NLP
2
4
6
๐จ Happening tomorrow! ๐จ ๐ 11am EDT(5pm CEST) @ellliottt (ETH) joins @AMLEDS1 to explore โ#AI #Preferences & #Economics.โ Modern AI isnโt just about language โ itโs about human preferences. Implications for economics & society? ๐ป https://t.co/pMI5vJsVrx
#LLMs #EconTwitter
0
1
2
6/ Donโt miss this chance to hear from Elliott Ash (@ellliottt), one of the leading voices bridging #AI and #economics. ๐
Friday, Oct 24 | ๐ 11am EDT / 5pm CEST ๐ Register now: https://t.co/pMI5vJtth5
#EconTwitter #Webinar #AMLEDS @AMLEDS1
lnkd.in
This link will take you to a page thatโs not on LinkedIn
1
0
1
5/ This session will interest anyone working at the crossroads of: ๐ง #AI & #economics ๐ Machine learning & empirical social science ๐ฃ๏ธ Textual data, #LLMs, and preference modeling #EconTwitter #AI, #Machinelearning #Datascience #Textualdata
1
0
0
3/ In this #AMLEDS #webinar, Elliott Ash (@ellliottt) (@ETH_en) will explore how #AIโs underlying modeling of preferences opens new frontiers for: * Economic modeling & behavioral research * Aligned AI system design * The synergy between AI & human decision-making #EconTwitter
1
0
1
2/ ๐ก Modern #AI systems โ from #NLP to #LLMs and #GenerativeAI โ arenโt just models of language. They are models of human intent and preference. What does this mean for #economics? For #research? For the design of aligned AI systems? #EconTwitter #AMLEDS
1
0
1
๐งต 1/ ๐น#AMLEDS #Webinar | #AI, Preferences&Economics๐น ๐
Friday, Oct 24 ๐ 11am EDT | 5pm CEST ๐On Zoom Join us for a deep dive into how AI can help us understand human preferences โ and what this means for economics and social sciences. ๐ https://t.co/pMI5vJtth5
#EconTwitter
2
2
5
๐ฏ Why it matters? If youโre evaluating #LLMs on pre-cutoff data your #forecasting may be a polished replay of past truths ๐ This paper offers the tools to audit and fix that ๐ https://t.co/pMI5vJsVrx
#EconTwitter #AI #DataScience #Econometrics #NLP #GPT4 #AMLEDS #Webinar 7/
lnkd.in
This link will take you to a page thatโs not on LinkedIn
0
0
0
โ
Solution: Convert firm-level info into abstract economic logic Anonymize identifiers = Forecasts with lower recall risk + solid directional accuracy (โ 51โ58%) ๐ก Simple longโshort strategy based on this yields a Sharpe ratio โ 2.09 #EconTwitter #AI #LLM #AMLEDS 6/
1
0
0
๐ง Embeddings leak signal ๐ญ Motivated reasoning adds polish to memory ๐ฅ Recent & prominent firms show strongest recall ๐ Small caps = higher refusal/error rates Itโs not just memorizationโitโs selective memorization. #EconTwitter #AI #LLM #AMLEDS 5/
1
0
0
๐ Pre-cutoff performance = eerily accurate ๐ Post-cutoff = collapse to noise โ ๏ธ Even โfakeโ cutoffs in prompts donโt work - #LLMs still #recall with high precision. And masking? Not enough. The model can deanonymize firms with 100% accuracy in some cases. #EconTwitter #AI 4/
1
0
0