
Feiteng
@FeitengLi
Followers
728
Following
489
Media
158
Statuses
953
Speech & LLM & RL & Video 原生算法,写过后端,今年想写前端。 🤣🥵🤖😺 公众号 Generative AI 知乎 https://t.co/MXuiNWWVOO
Shanghai
Joined November 2016
I reproduced the results of VALL-E, the demo is here To avoid be misused, well-trained models and services will not be provided.
1
3
25
RT @OpenBMB: 🚨 MiniCPM-V 4.0 is here! 🚨.✨Key features:.🏗️4.1B parameters.🧠Matches GPT-4.1-mini-20250414 on image understanding tasks in Ope….
0
48
0
RT @Alibaba_Qwen: 🚀 Meet Qwen-Image — a 20B MMDiT model for next-gen text-to-image generation. Especially strong at creating stunning graph….
0
624
0
RT @NagaSaiAbhinay: PR seems to be deleted but weights here: Interestingly they distilled the two transformers sep….
huggingface.co
0
1
0
Wan2.2-Lightning: Distill Wan2.2 Family into 4 Steps. 1. only 4 steps without the need of CFG trick, leading to x20 speed-up.2. The distilled model delivers visuals on par with the base model in most scenarios, sometimes even better.
github.com
1
0
3
📄 TITAN-Guide: Taming Inference-Time AligNment for Guided Text-to-Video Diffusion Models. 📄 论文: 🤖 GitHub Pages:
arxiv.org
In the recent development of conditional diffusion models still require heavy supervised fine-tuning for performing control on a category of tasks. Training-free conditioning via guidance with...
1
1
3
No More Redundant Steps!.🎯 全球计划将冗余操作减少了一半!在BabyAI(图6)中,PilotRL的自适应指导帮助代理避免了无目的的步骤。现在大型语言模型(LLMs)可以用更少的错误解决复杂任务。#AIResearch #ReinforcementLearning
0
0
0
Adaptive Global Planning = Better Coordination!.🧠 AdaPlan vs. ReAct:性能提升12.76%!通过将全局规划器和执行器整合到一个统一的模型中,PilotRL确保了紧密的协调和动态计划调整。详见图2。#MachineLearning #LLM
1
0
0
LLM Agents Just Got Smarter!.🚀 PilotRL 在代理任务中比 GPT-4o(3.60%)和 GPT-4o-mini(55.78%)表现更优秀!我们的三阶段渐进式强化学习(Reinforcement Learning)+ AdaPlan 理念实现了自适应全局规划,提升了长期决策能力。开源模型现在可以与闭源模型相匹敌。#AI #ReinforcementLearning
1
0
0
📄 PilotRL: Training Language Model Agents via Global Planning-Guided Progressive Reinforcement Learning. 📄 论文:
arxiv.org
Large Language Models (LLMs) have shown remarkable advancements in tackling agent-oriented tasks. Despite their potential, existing work faces challenges when deploying LLMs in agent-based...
1
0
0
🧩 Modular Agent Framework.如何在没有付费API的情况下构建代理?认知内核-Pro使用Python代码作为动作空间,并为子代理(网络、文件、工具)提供统一接口。其分层设计使得大型语言模型(LLM)和视觉语言模型(VLM)能力的无缝集成成为可能。查看图3中的框架架构!#AgentFoundationModels #TechTwitter
1
0
0
📄 Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training. 📄 论文: 💻 代码:
github.com
Contribute to Tencent/CognitiveKernel-Pro development by creating an account on GitHub.
2
0
2