Feiteng Profile
Feiteng

@FeitengLi

Followers
728
Following
489
Media
158
Statuses
953

Speech & LLM & RL & Video 原生算法,写过后端,今年想写前端。 🤣🥵🤖😺 公众号 Generative AI 知乎 https://t.co/MXuiNWWVOO

Shanghai
Joined November 2016
Don't wanna be here? Send us removal request.
@FeitengLi
Feiteng
2 years
I reproduced the results of VALL-E, the demo is here To avoid be misused, well-trained models and services will not be provided.
Tweet media one
1
3
25
@FeitengLi
Feiteng
22 minutes
RT @code: we heard you like Opus.
Tweet media one
0
115
0
@FeitengLi
Feiteng
10 hours
当你还在玩图像视频生成的时候….
@GoogleDeepMind
Google DeepMind
11 hours
What if you could not only watch a generated video, but explore it too? 🌐. Genie 3 is our groundbreaking world model that creates interactive, playable environments from a single text prompt. From photorealistic landscapes to fantasy realms, the possibilities are endless. 🧵
0
0
1
@FeitengLi
Feiteng
10 hours
RT @OpenBMB: 🚨 MiniCPM-V 4.0 is here! 🚨.✨Key features:.🏗️4.1B parameters.🧠Matches GPT-4.1-mini-20250414 on image understanding tasks in Ope….
0
48
0
@FeitengLi
Feiteng
21 hours
还是不说不说 看着眼前三分地吧.
0
0
0
@FeitengLi
Feiteng
1 day
RT @Alibaba_Qwen: 🚀 Meet Qwen-Image — a 20B MMDiT model for next-gen text-to-image generation. Especially strong at creating stunning graph….
0
624
0
@FeitengLi
Feiteng
1 day
RT @NagaSaiAbhinay: PR seems to be deleted but weights here: Interestingly they distilled the two transformers sep….
Tweet card summary image
huggingface.co
0
1
0
@FeitengLi
Feiteng
1 day
Wan2.2-Lightning: Distill Wan2.2 Family into 4 Steps. 1. only 4 steps without the need of CFG trick, leading to x20 speed-up.2. The distilled model delivers visuals on par with the base model in most scenarios, sometimes even better.
Tweet card summary image
github.com
1
0
3
@FeitengLi
Feiteng
2 days
🎬 High-Res Videos, Low Memory Costs.在笔记本电脑上生成384×384的视频?TITAN-Guide让你梦想成真!他们的低成本训练策略在保持空间-时间一致性的同时,大幅削减了VRAM的使用量。查看帧插值魔法(图9)和风格迁移演示(图8),这些演示均保留了文本对齐。代码和模型现可访问
Tweet media one
0
0
0
@FeitengLi
Feiteng
2 days
🔧 TITAN-Guide 是如何工作的.TITAN-Guide 使用前向自动微分(forward AD)来估计梯度,而无需反向传播!这种巧妙的方法通过迭代将视频潜在变量(latents)调整到 t=0,从而避免了内存膨胀。它支持在消费级 GPU 上生成高分辨率(384×384)的视频,并在对齐得分上优于
Tweet media one
1
0
0
@FeitengLi
Feiteng
2 days
🚀 Memory-Efficient Video Diffusion Breakthrough.TITAN-Guide 重新定义了文本到视频的生成指导!通过用正向梯度(forward gradients)替换反向传播(backpropagation),它将 GPU 内存使用量减少了 50%,同时在音视频对齐、风格迁移和帧插值方面取得了
Tweet media one
1
0
0
@FeitengLi
Feiteng
2 days
📄 TITAN-Guide: Taming Inference-Time AligNment for Guided Text-to-Video Diffusion Models. 📄 论文: 🤖 GitHub Pages:
Tweet card summary image
arxiv.org
In the recent development of conditional diffusion models still require heavy supervised fine-tuning for performing control on a category of tasks. Training-free conditioning via guidance with...
1
1
3
@FeitengLi
Feiteng
2 days
No More Redundant Steps!.🎯 全球计划将冗余操作减少了一半!在BabyAI(图6)中,PilotRL的自适应指导帮助代理避免了无目的的步骤。现在大型语言模型(LLMs)可以用更少的错误解决复杂任务。#AIResearch #ReinforcementLearning
Tweet media one
0
0
0
@FeitengLi
Feiteng
2 days
Adaptive Global Planning = Better Coordination!.🧠 AdaPlan vs. ReAct:性能提升12.76%!通过将全局规划器和执行器整合到一个统一的模型中,PilotRL确保了紧密的协调和动态计划调整。详见图2。#MachineLearning #LLM
Tweet media one
1
0
0
@FeitengLi
Feiteng
2 days
LLM Agents Just Got Smarter!.🚀 PilotRL 在代理任务中比 GPT-4o(3.60%)和 GPT-4o-mini(55.78%)表现更优秀!我们的三阶段渐进式强化学习(Reinforcement Learning)+ AdaPlan 理念实现了自适应全局规划,提升了长期决策能力。开源模型现在可以与闭源模型相匹敌。#AI #ReinforcementLearning
Tweet media one
1
0
0
@FeitengLi
Feiteng
2 days
🛡️ 更智能的推断:使用投票机制(Voting).厌倦了代理的幻觉了吗?认知内核-PRO(Cognitive.
0
0
0
@FeitengLi
Feiteng
2 days
🧩 Modular Agent Framework.如何在没有付费API的情况下构建代理?认知内核-Pro使用Python代码作为动作空间,并为子代理(网络、文件、工具)提供统一接口。其分层设计使得大型语言模型(LLM)和视觉语言模型(VLM)能力的无缝集成成为可能。查看图3中的框架架构!#AgentFoundationModels #TechTwitter
Tweet media one
1
0
0
@FeitengLi
Feiteng
2 days
🚀 Open-Source Agent Breakthrough.认知内核-Pro 是首个开源框架,用于深度研究代理,仅使用免费工具便超越了闭源系统,如 WebDancer/WebSailor!其80亿参数模型在GAIA上实现了57.58%的Pass@1指标,与专有系统不相上下。AI研究的民主化又迈出了重要一步。#AI #开源. (Pass@1:一次通过率)
Tweet media one
1
0
0
@FeitengLi
Feiteng
2 days
📄 Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training. 📄 论文: 💻 代码:
Tweet card summary image
github.com
Contribute to Tencent/CognitiveKernel-Pro development by creating an account on GitHub.
2
0
2