CoreTechInsight Profile Banner
CoreTechInsights Profile
CoreTechInsights

@CoreTechInsight

Followers
7
Following
2
Media
26
Statuses
172

πŸ“Š Strategic insights at the core of tech | Cloud, AI, Data | Curated for professionals, founders & digital leaders | #TechIntelligence @CoreTechInsight

Joined July 2025
Don't wanna be here? Send us removal request.
@CoreTechInsight
CoreTechInsights
1 month
5:**.🌐 **Top Cloud Providers**:. - πŸš€ AWS – Market leader .- 🧩 Azure – Microsoft integration .- πŸ” GCP – Strong in data & AI .- ☁️ IBM, Oracle – Enterprise focus . Each has strengths. Multi-cloud is rising. #AWS #Azure #GCP #CloudPlatforms #CloudStrategy.
0
0
0
@CoreTechInsight
CoreTechInsights
1 month
4:**.βš™οΈ **Key Characteristics** of cloud:. - On-demand self-service .- Broad network access .- Resource pooling .- Elasticity .- Measured usage . Enables rapid innovation & scaling. #CloudBenefits #ElasticComputing #CloudInfra.
1
0
0
@grok
Grok
7 days
What do you want to know?.
587
381
2K
@CoreTechInsight
CoreTechInsights
1 month
3:**.πŸ—οΈ **Deployment Models**:. - ☁️ Public Cloud – Shared infra (AWS, GCP) .- 🏠 Private Cloud – Dedicated infra (OpenStack) .- πŸŒ‰ Hybrid Cloud – Mix of public + private .- πŸ”€ Multi-Cloud – Using many providers . Flexibility is key! .#PublicCloud #HybridCloud #MultiCloud.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
2:**.🧰 **Cloud Service Models**:. - **IaaS**: Infra (VMs, storage) – e.g. AWS EC2 .- **PaaS**: Platform to build – e.g. Azure App Service .- **SaaS**: Software ready to use – e.g. Gmail, Salesforce . Choose based on control vs convenience! .#IaaS #PaaS #SaaS #CloudModels.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
1:**.🌩️ What is **Cloud Computing**?. It's the on-demand delivery of IT resources (compute, storage, network, services) via the internet with **pay-as-you-go** pricing. No more buying physical servers! .#CloudComputing #DigitalTransformation #Cl.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
Tweet media one
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
5.Think of Data Mesh as treating data like APIs. Each domain provides clean, well-documented, and discoverable data to others β€” like products. Decentralized doesn’t mean chaos β€” it means ownership with standards. #DataStrategy #DataDriven #NextGenDataPlatform.
0
0
0
@CoreTechInsight
CoreTechInsights
1 month
4.Why adopt Data Mesh?.βœ”οΈ Avoid bottlenecks from central data teams.βœ”οΈ Enable faster insights.βœ”οΈ Improve data quality and accountability.βœ”οΈ Scale with organization growth. #DataDemocratization #DecentralizedData #AgileData.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
3.Key principles of Data Mesh:.βœ… Domain-oriented ownership.βœ… Data as a product.βœ… Self-serve data infrastructure.βœ… Federated governance. This enables scalability, agility, and better data quality. #DataGovernance #DataArchitecture #ScalableData.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
2.Instead of funneling all data to a central team, Data Mesh distributes responsibilities to cross-functional domain teams. Each team owns the lifecycle of their data β€” ingestion, quality, transformation, and sharing. #DomainDrivenDesign #DataProduct #DataOps.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
1.Data Mesh is a modern approach to data architecture that shifts from centralized data lakes to domain-oriented data ownership. It treats data as a product and empowers domain teams to manage and share their own data. #DataMesh #DataOwnership #ModernData.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
5: Cloud & Streaming Friendly.Run PySpark on:.☁️ Databricks.βš™οΈ EMR.πŸ’  Azure Synapse.πŸ”₯ Google Dataproc.And stream via Kafka, process via Delta, Iceberg, Hudi!.#CloudAnalytics #PySparkStreaming #ApacheKafka #DeltaLake.
0
0
0
@CoreTechInsight
CoreTechInsights
1 month
4: Flexible ETL & Workflow Integration.Schedule PySpark ETL with:.πŸŒ€ Airflow.πŸ’§ NiFi.🚦 Oozie.🧱 dbt.πŸš€ KubeFlow Pipelines.Ideal for enterprise-grade orchestration!.#ETLTools #WorkflowAutomation #DataOps #PySparkETL.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
3: Compatible with Your Favorite Notebooks.Develop with PySpark in:.πŸ““ Jupyter.πŸ§ͺ Databricks.🧠 Zeppelin.🎯 VS Code.βœ… Even Google Colab (with setup).#PySparkDev #Notebooks #Jupyter #Databricks.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
2: Machine Learning Made Easy.Use MLlib, integrate scikit-learn, XGBoost, or connect PyTorch & TensorFlow models. PySpark powers ML pipelines at scale. #MLlib #PySparkML #AI #DataScience.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
1: PySpark Meets Data Lakes & Warehouses.PySpark integrates with top storage engines like HDFS, Hive, Cassandra, Delta Lake, and all major cloud storages (S3, GCS, Azure Blob). Scalable & storage-agnostic!.#PySpark #BigData #DataLakes #CloudStorage.
1
0
0
@CoreTechInsight
CoreTechInsights
1 month
5: Enterprise Ready.PySpark is trusted by top enterprises for high-volume data workloads in production. It’s scalable, fault-tolerant, and battle-tested for modern data platforms. #EnterpriseAI #CloudDataEngineering #PySparkAtScale.
0
0
0
@CoreTechInsight
CoreTechInsights
1 month
4: Seamless Integration.Use familiar Python libraries (Pandas, NumPy, scikit-learn) with Spark’s scalability. Connect to HDFS, Hive, Cassandra, AWS S3, and more. #PythonDataScience #CloudAnalytics #DataOps.
1
0
0