
CoreTechInsights
@CoreTechInsight
Followers
7
Following
2
Media
26
Statuses
172
π Strategic insights at the core of tech | Cloud, AI, Data | Curated for professionals, founders & digital leaders | #TechIntelligence @CoreTechInsight
Joined July 2025
5:**.π **Top Cloud Providers**:. - π AWS β Market leader .- π§© Azure β Microsoft integration .- π GCP β Strong in data & AI .- βοΈ IBM, Oracle β Enterprise focus . Each has strengths. Multi-cloud is rising. #AWS #Azure #GCP #CloudPlatforms #CloudStrategy.
0
0
0
4:**.βοΈ **Key Characteristics** of cloud:. - On-demand self-service .- Broad network access .- Resource pooling .- Elasticity .- Measured usage . Enables rapid innovation & scaling. #CloudBenefits #ElasticComputing #CloudInfra.
1
0
0
3:**.ποΈ **Deployment Models**:. - βοΈ Public Cloud β Shared infra (AWS, GCP) .- π Private Cloud β Dedicated infra (OpenStack) .- π Hybrid Cloud β Mix of public + private .- π Multi-Cloud β Using many providers . Flexibility is key! .#PublicCloud #HybridCloud #MultiCloud.
1
0
0
2:**.π§° **Cloud Service Models**:. - **IaaS**: Infra (VMs, storage) β e.g. AWS EC2 .- **PaaS**: Platform to build β e.g. Azure App Service .- **SaaS**: Software ready to use β e.g. Gmail, Salesforce . Choose based on control vs convenience! .#IaaS #PaaS #SaaS #CloudModels.
1
0
0
1:**.π©οΈ What is **Cloud Computing**?. It's the on-demand delivery of IT resources (compute, storage, network, services) via the internet with **pay-as-you-go** pricing. No more buying physical servers! .#CloudComputing #DigitalTransformation #Cl.
1
0
0
What is Cloud Computing? A thread. β¬οΈ. #CloudComputing #IaaS #PaaS #SaaS #PublicCloud #HybridCloud #MultiCloud #CloudBenefits #CloudPlatforms #CloudStrategy
1
0
0
5.Think of Data Mesh as treating data like APIs. Each domain provides clean, well-documented, and discoverable data to others β like products. Decentralized doesnβt mean chaos β it means ownership with standards. #DataStrategy #DataDriven #NextGenDataPlatform.
0
0
0
4.Why adopt Data Mesh?.βοΈ Avoid bottlenecks from central data teams.βοΈ Enable faster insights.βοΈ Improve data quality and accountability.βοΈ Scale with organization growth. #DataDemocratization #DecentralizedData #AgileData.
1
0
0
3.Key principles of Data Mesh:.β
Domain-oriented ownership.β
Data as a product.β
Self-serve data infrastructure.β
Federated governance. This enables scalability, agility, and better data quality. #DataGovernance #DataArchitecture #ScalableData.
1
0
0
2.Instead of funneling all data to a central team, Data Mesh distributes responsibilities to cross-functional domain teams. Each team owns the lifecycle of their data β ingestion, quality, transformation, and sharing. #DomainDrivenDesign #DataProduct #DataOps.
1
0
0
1.Data Mesh is a modern approach to data architecture that shifts from centralized data lakes to domain-oriented data ownership. It treats data as a product and empowers domain teams to manage and share their own data. #DataMesh #DataOwnership #ModernData.
1
0
0
Understanding Data Mesh. β¬οΈ. #DataMesh #DataOwnership #DomainDrivenDesign #DataProduct #DataOps #DataGovernance #DataArchitecture #ScalableData #DataDemocratization #AgileData #DataStrategy #DataDriven #NextGenDataPlatform
1
0
0
5: Cloud & Streaming Friendly.Run PySpark on:.βοΈ Databricks.βοΈ EMR.π Azure Synapse.π₯ Google Dataproc.And stream via Kafka, process via Delta, Iceberg, Hudi!.#CloudAnalytics #PySparkStreaming #ApacheKafka #DeltaLake.
0
0
0
4: Flexible ETL & Workflow Integration.Schedule PySpark ETL with:.π Airflow.π§ NiFi.π¦ Oozie.π§± dbt.π KubeFlow Pipelines.Ideal for enterprise-grade orchestration!.#ETLTools #WorkflowAutomation #DataOps #PySparkETL.
1
0
0
3: Compatible with Your Favorite Notebooks.Develop with PySpark in:.π Jupyter.π§ͺ Databricks.π§ Zeppelin.π― VS Code.β
Even Google Colab (with setup).#PySparkDev #Notebooks #Jupyter #Databricks.
1
0
0
2: Machine Learning Made Easy.Use MLlib, integrate scikit-learn, XGBoost, or connect PyTorch & TensorFlow models. PySpark powers ML pipelines at scale. #MLlib #PySparkML #AI #DataScience.
1
0
0
1: PySpark Meets Data Lakes & Warehouses.PySpark integrates with top storage engines like HDFS, Hive, Cassandra, Delta Lake, and all major cloud storages (S3, GCS, Azure Blob). Scalable & storage-agnostic!.#PySpark #BigData #DataLakes #CloudStorage.
1
0
0
Tools supported by PySpark. A thread. β¬οΈ. #PySpark #BigData #DataLakes #CloudStorage #MLlib #PySparkML #AI #DataScience #PySparkDev #Notebooks #Databricks #ETLTools #WorkflowAutomation #DataOps #CloudAnalytics #ApacheKafka #DeltaLake
1
0
0
5: Enterprise Ready.PySpark is trusted by top enterprises for high-volume data workloads in production. Itβs scalable, fault-tolerant, and battle-tested for modern data platforms. #EnterpriseAI #CloudDataEngineering #PySparkAtScale.
0
0
0
4: Seamless Integration.Use familiar Python libraries (Pandas, NumPy, scikit-learn) with Sparkβs scalability. Connect to HDFS, Hive, Cassandra, AWS S3, and more. #PythonDataScience #CloudAnalytics #DataOps.
1
0
0